Trinocchio: Privacy-Friendly Outsourcing by Distributed Verifiable Computation
نویسندگان
چکیده
Verifiable computation allows a client to outsource computations to a worker with a cryptographic proof of correctness of the result that can be verified faster than performing the computation. Recently, the Pinocchio system achieved faster verification than computation in practice for the first time. Unfortunately, Pinocchio and other efficient verifiable computation systems require the client to disclose the inputs to the worker, which is undesirable for sensitive inputs. To solve this problem, we propose Trinocchio: a system that distributes Pinocchio to three (or more) workers, that each individually do not learn which inputs they are computing on. Each worker essentially performs the work for a single Pinocchio proof; verification by the client remains the same. Moreover, we extend Trinocchio to enable joint computation with multiple mutually distrusting inputters and outputters and still very fast verification. We show the feasibility of our approach by analysing the performance of an implementation in two case studies.
منابع مشابه
Trinocchio: Privacy-Preserving Outsourcing by Distributed Verifiable Computation
Verifiable computation allows a client to outsource computations to a worker with a cryptographic proof of correctness of the result that can be verified faster than performing the computation. Recently, the Pinocchio system achieved faster verification than computation in practice for the first time. Unfortunately, Pinocchio and other efficient verifiable computation systems require the client...
متن کاملGuaranteeing Correctness in Privacy-Friendly Outsourcing by Certificate Validation
With computation power in the cloud becoming a commodity, it is more and more convenient to outsource computations to external computation parties. Assuring confidentiality, even of inputs by mutually distrusting inputters, is possible by distributing computations between different parties using multiparty computation. Unfortunately, this typically only guarantees correctness if a limited numbe...
متن کاملSESOS: A Verifiable Searchable Outsourcing Scheme for Ordered Structured Data in Cloud Computing
While cloud computing is growing at a remarkable speed, privacy issues are far from being solved. One way to diminish privacy concerns is to store data on the cloud in encrypted form. However, encryption often hinders useful computation cloud services. A theoretical approach is to employ the so-called fully homomorphic encryption, yet the overhead is so high that it is not considered a viable s...
متن کاملDistributed Outsourcing of Computation on Private Data∗ A Distributed Implementation of the Certified Information Access Service
In this paper we consider the problem of securely outsourcing computation on private data. We present a protocol for securely distributing the computation of the data structures used by current implementations of the Certified Information Access primitive. To this aim, we introduce the concept of a Verifiable Deterministic Envelope that may be of independent interest and of which we provide pra...
متن کاملUniversally Verifiable Multiparty Computation from Threshold Homomorphic Cryptosystems
Multiparty computation can be used for privacy-friendly outsourcing of computations on private inputs of multiple parties. A computation is outsourced to several computation parties; if not too many are corrupted (e.g., no more than half), then they cannot determine the inputs or produce an incorrect output. However, in many cases, these guarantees are not enough: we need correctness even if al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2015 شماره
صفحات -
تاریخ انتشار 2015